寫了個生成樹模板XDDD
#include <iostream> #include <cstdio> #include <vector> #include <algorithm> #include <cstring> #include <utility> #include <cmath> #include <ctime> #include <cstdlib> #include <queue> #include <stack> #include <set> #include <map> using namespace std; #define LL long long #define ld long double #define pii pair<int,int> #define pLL pair<LL,LL> #define vint vector<int> #define vLL vector<LL> #define vpii vector<pii> #define SZ(x) ((int)(x).size()) #define ALL(x) (x).begin(),(x).end() #define F first #define S second #define MP make_pair #define PB push_back #define Si(x) scanf("%d",&(x)); #define Sii(x,y) scanf("%d %d",&(x),&(y)); #define Siii(x,y,z) scanf("%d %d %d",&(x),&(y),&(z)); #define Siiii(x,y,z,w) scanf("%d %d %d %d",&(x),&(y),&(z),&(w)); #define Siiiii(x,y,z,w,a) scanf("%d %d %d %d %d",&(x),&(y),&(z),&(w),&(a)); #define Siiiiii(x,y,z,w,a,b) scanf("%d %d %d %d %d %d",&(x),&(y),&(z),&(w),&(a),&(b)); #define SL(x) scanf("%lld",&(x)); #define SLL(x,y) scanf("%lld %lld",&(x),&(y)); #define SLLL(x,y,z) scanf("%lld %lld %lld",&(x),&(y),&(z)); #define SLLLL(x,y,z,w) scanf("%lld %lld %lld %lld",&(x),&(y),&(z),&(w)); #define SLLLLL(x,y,z,w,a) scanf("%lld %lld %lld %lld %lld",&(x),&(y),&(z),&(w),&(a)); #define SLLLLLL(x,y,z,w,a,b) scanf("%lld %lld %lld %lld %lld %lld",&(x),&(y),&(z),&(w),&(a),&(b)); #define Pi(x) printf("%d\n",(x)); #define Pii(x,y) printf("%d %d\n",(x),(y)); #define Piii(x,y,z) printf("%d %d %d\n",(x),(y),(z)); #define Piiii(x,y,z,w) printf("%d %d %d %d\n",(x),(y),(z),(w)); #define Piiiii(a,b,c,d,e) printf("%d %d %d %d %d\n",(a),(b),(c),(d),(e)); #define Piiiiii(a,b,c,d,e,f) printf("%d %d %d %d %d %d\n",(a),(b),(c),(d),(e),(f)); #define PL(x) printf("%lld\n",(x)*1LL); #define PLL(x,y) printf("%lld %lld\n",(x)*1LL,(y)*1LL); #define PLLL(x,y,z) printf("%lld %lld %lld\n",(x)*1LL,(y)*1LL,(z)*1LL); #define PLLLL(x,y,z,w) printf("%lld %lld %lld %lld\n",(x)*1LL,(y)*1LL,(z)*1LL,(w)*1LL); #define PLLLLL(a,b,c,d,e) printf("%lld %lld %lld %lld %lld\n",(a),(b),(c),(d),(e)); #define PLLLLLL(a,b,c,d,e,f) printf("%lld %lld %lld %lld %lld %lld\n",(a),(b),(c),(d),(e),(f)); #define Pi1(x) printf("%d", (x)); #define PL1(x) printf("%lld",(x)); #define Pspace putchar(' '); #define Pendl puts(""); #define MEM0(x) memset( (x), 0, sizeof( (x) ) ) #define MEM1(x) memset( (x),-1, sizeof( (x) ) ) #define REP1(i,n) for (int i = 1; (n) >= i ; ++i) #define REP0(i,n) for (int i = 0; (n) > i ; ++i) int myRnd() { return abs( ((rand()<<15) | rand()) ); } int myRnd(int L,int R) { return abs(( (rand()<<15)|rand() ) ) % (R-L+1) + L; } void Parr(int *arr,int L,int R) { for (int i=L;R>=i;i++) { printf("%d%c",arr[i]," \n"[i==R]); } } void Pvec(vint v) { for (int i=0;SZ(v)>i;i++) { printf("%d%c",v[i]," \n"[i==SZ(v)-1]); } } const int N = 5e5 + 6; bool can[N]; struct Second_MST { static const int N = 5e5 + 6; static const int P = 20; //P = lg N static const int INF = 1e9 + 7; vpii G[N]; struct Edge { int a,b,c; //cost = c Edge(){} Edge(int _a,int _b,int _c):a(_a),b(_b),c(_c){} bool operator<(const Edge &e1) { return c<e1.c; } }; struct DisjointSet { int p[N]; int sz[N]; void init(int n) { for (int i=0;n>=i;i++) { p[i] = i; sz[i] = 1; } } int Find(int x) { return p[x] == x?x:p[x]=Find(p[x]); } void Union(int x,int y) { x=Find(x); y=Find(y); if (x==y) return; if (sz[x] > sz[y]) swap(x,y); p[x] = y; sz[y] += sz[x]; } } djs; vector<Edge> edg; int n,m; int type[N]; //1 --> on original MST, 2 --> can on MST void init(int n,int m) { this->n = n; this->m = m; REP0(i,n+1) { G[i].clear(); } edg.clear(); MEM0(type); } void add_edge(int a,int b,int c) { edg.PB(Edge(a,b,c)); } LL ret_MST; LL Kruskal() { LL ret=0; djs.init(n); sort(ALL(edg)); int eid=-1; for (Edge e:edg) { eid++; if (djs.Find(e.a) == djs.Find(e.b)) { continue; } ret += e.c; djs.Union(e.a,e.b); G[e.a].PB({e.b,e.c}); G[e.b].PB({e.a,e.c}); type[eid] = 1; } this->ret_MST = ret; return ret; }; pii lca[P][N]; int pin[N],pout[N]; int pid; void dfs(int v,int par,int cost) { lca[0][v] = {par,cost}; pin[v] = pid++; for (pii p:G[v]) { if (p.F != par) dfs(p.F,v,p.S); } pout[v] = pid++; } bool is_anc(int son,int par) { return pin[par] <= pin[son] && pout[son] <= pout[par]; } int get_path(int son,int par) { if (son == par) return 0; int ret=0; for (int i=P-1;i>=0;i--) { if (!is_anc(par,lca[i][son].F)) { ret = max(ret,lca[i][son].S); son = lca[i][son].F; } } return max(ret,lca[0][son].S); } int get_lca(int u,int v) { if (is_anc(u,v)) return v; if (is_anc(v,u)) return u; for (int i=P-1;i>=0;i--) { if (!is_anc(v,lca[i][u].F)) { u = lca[i][u].F; } } return lca[0][u].F; } LL get_second_MST() { Kruskal(); pid=0; dfs(1,1,INF); REP1(i,P-1) { REP1(j,n) { lca[i][j] ={lca[ i-1 ][ lca[i-1][j].F ].F,max(lca[i-1][j].S, lca[ i-1 ][ lca[i-1][j].F ].S )}; } } LL ret = ret_MST + INF; int eid=-1; for (Edge e:edg) { eid++; if (type[eid] == 1) continue; int lca=get_lca(e.a,e.b); LL mx = max(get_path(e.a,lca),get_path(e.b,lca)); if (mx == e.c) { type[eid] = 2; } ret = min(ret,ret_MST - mx + e.c); } return ret; } } solver; int main () { int T; Si(T); while (T--) { int n,m; Sii(n,m); solver.init(n,m); REP1(i,m) { int a,b,c; Siii(a,b,c); solver.add_edge(a,b,c); } PLL(solver.Kruskal(),solver.get_second_MST()); } }